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1. Introduction

Electro-discharge machining (EDM) is a non-contact process of electrically removing (cutting)
material from conductive workpieces. In this process, a high potential difference is generated
between a wire and a workpiece by charging them positively and negatively, respectively. The
potential difference causes sparks between the wire and the workpiece. The extreme heat due to
the sparks melts the workpiece. By moving the wire forward and sideways a desired contour can
be cut on the workpiece. In this process, the wire is worn off mutually. In order to avoid possible
breakage of the wire due to severe localized wear, the wire is moved axially by reeling it off a
supply spool and collecting it at a take-up spool; see Fig. 1(a) for a schematic of the EDM process.
The set-up in Fig. 1(a) is placed in a dielectric fluid, such as oil or deionized water, to enhance the
sparking between the wire and the workpiece, to cool the workpiece, and to flush away the cut
particles.
Although the EDM is a fast, accurate, and economical process of manufacturing, it suffers

from problems such as: (1) deflection of the wire which can cause inaccuracies in the cut; (2)
vibration of the wire which can cause uneven surfaces on the workpiece and possibly the wire
rupture. In order to have a better understanding of the EDM, this process has been studied by
researchers; see, e.g., Refs. [1–4] and the references therein. Problems of particular interest are the
wire dynamics, wire deflection, and wire vibration. To study such problems, mathematical models
that (approximately) describe the dynamics of EDM wires have been developed in recent years;
see, e.g., Refs. [3,4]. Numerical studies of such models, as well as experimental results, show that
for low and intermediate axial speeds of the wire, the straight configuration of the wire is stable,
whereas for large axial speeds, the wire becomes unstable.
In this note, using an existing mathematical model of EDM wires, it is rigorously shown that

the transversal vibration of the wire decays to zero for wire axial speeds below a critical value.
That is, the wire is stable. This fact is proved by showing that an energy-like (Lyapunov) function
corresponding to the wire decays to zero exponentially.
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2. A mathematical model of EDM wires

The wire used in the EDM process is supported by two pulleys and moves axially. The pulleys
are distanced from each other by the unit length; see Fig. 1(b). Moreover, a part of the wire
between the two pulleys is heated. Having this simplified model, the dynamics of the wire can be
represented by the following non-linear partial differential equation (see Ref. [4]):

yttðx; tÞ þ 2dytðx; tÞ þ 2vyxtðx; tÞ ¼ 1� v2 þ kTðxÞ þ b

Z 1

0

y2
xðx; tÞ dx

� �
yxxðx; tÞ

þ kTxðxÞyxðx; tÞ; ð1Þ

for all xAð0; 1Þ and tX0: In Eq. (1), yð:; :ÞAR denotes the transversal displacement of the wire,
yt :¼ @y=@t; ytt :¼ @2y=@t2; yx :¼ @y=@x; yxx :¼ @2y=@x2; yxt :¼ @2y=@x@t; the constant real number
d > 0 corresponds to the damping coefficient of the wire; the constant real number vX0 is proportional
to the wire axial speed; the constant real number k > 0 is proportional to the elastic modulus and the
thermal expansion coefficient of the wire; the constant real number b > 0 is proportional to the elastic
modulus of the wire; TðxÞ; where xA½0; 1� is the wire temperature profile; and Tx :¼ @T=@x represents
the temperature change along the wire. In realistic physical situations, vo1:
The boundary conditions of the wire are

yð0; tÞ ¼ yð1; tÞ ¼ 0; ð2Þ

for all tX0; and the initial displacement and velocity of the wire are, respectively,

yðx; 0Þ ¼ f ðxÞ; ytðx; 0Þ ¼ gðxÞ; ð3Þ
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Fig. 1. (a) A schematic of the EDM process. The wire is reeled off a supply spool and is collected at a take-up spool. (b)

The transversal displacement of the wire is denoted by y:
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for all xAð0; 1Þ: It is assumed that fAC1½0; 1� and that at least one of the functions f ð�Þ or gð�Þ is not
identically equal to zero over ½0; 1�:
On the right-hand side of Eq. (1), there are two terms that account for the dependence of the

wire dynamics on the wire temperature profile x/TðxÞ and its change x/TxðxÞ: If these two
terms were absent, then Eq. (1) would present the dynamics of an axially moving Kirchhoff wire;
see, e.g., Ref. [5] and the references therein. The temperature TðxÞX0 for all xA½0; 1�: The
temperature profile x/TðxÞ depends on the wire axial speed v: If v is small (respectively, large),
then temperatures along the wire are large (small); see Refs. [3,4] for typical wire temperature
profiles.
In this note, the goal is to show that the wire is stable, i.e., yðx; tÞ-0 as t-N for all xA½0; 1�:

This goal is achieved by taking an energy approach.

3. Stability of the wire

The plan to establish the stability of the non-linear wire represented by Eqs. (1)–(3) is as
follows. An energy-like (Lyapunov) function of time for system (1)–(3) is defined and denoted by
t/V ðtÞ: It is then shown that V ð�Þ tends to zero exponentially, from which the stability of the wire
is concluded.
The scalar-valued function Vð�Þ is defined as

VðtÞ :¼ EðtÞ þ
Z 1

0

½dytðx; tÞyðx; tÞ þ d2y2ðx; tÞ� dx; ð4Þ

for all tX0; where

EðtÞ :¼
1

2

Z 1

0

y2t ðx; tÞ þ ½1� v2 þ kTðxÞ�y2
xðx; tÞ

� �
dx þ

b

4

Z 1

0

y2
xðx; tÞ dx

� �2

; ð5Þ

and yð�; �Þ satisfies Eqs. (1)–(3). The function Vð�Þ can be written as

V ðtÞ ¼
1

2

Z 1

0

½ytðx; tÞ þ dyðx; tÞ�2 þ d2y2ðx; tÞ þ ½1� v2 þ k TðxÞ�y2xðx; tÞ
� �

dx

þ
b

4

Z 1

0

y2xðx; tÞ dx

� �2

; ð6Þ

for all tX0: From Eqs. (2)–(5), it is concluded that

Eð0Þ ¼
1

2

Z 1

0

g2ðxÞ þ ½1� v2 þ kTðxÞ�f 2
x ðxÞ

� �
dx þ

b

4

Z 1

0

f 2
x ðxÞ dx

� �2

; ð7aÞ

V ð0Þ ¼ Eð0Þ þ
Z 1

0

½d gðxÞf ðxÞ þ d2 f 2ðxÞ� dx; ð7bÞ

where fxðxÞ :¼ df ðxÞ=dx:
Now, some properties of V ð�Þ are proved.

Lemma 3.1. The function V ð�Þ is non-negative and V ð0Þ > 0:
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Proof. See Appendix A. &

Next, it is shown that V ð�Þ can be bounded by Eð�Þ:

Lemma 3.2. The function V ð�Þ satisfies

VðtÞpKEðtÞ; ð8Þ

for all tX0; where

K ¼ 1þ
dð1þ 2d=pÞ
pð1� v2Þ

: ð9Þ

Proof. See Appendix A. &

Some useful identities are now established for functions that satisfy Eqs. (2) and (3).

Lemma 3.3. If yð�; �Þ satisfies Eqs. (2) and (3), then (the argument ðx; tÞ of functions is deleted)

2

Z 1

0

yxt yt dx ¼ 0;

Z 1

0

yxt y dx ¼ �
Z 1

0

ytyx dx; ð10a;bÞ

Z 1

0

yxx y dx ¼ �
Z 1

0

y2x dx;

Z 1

0

ðyxx yt þ yxt yxÞ dx ¼ 0; ð10c;dÞ

Z 1

0

TðxÞyxx y dx ¼ �
Z 1

0

TxðxÞyxy dx �
Z 1

0

TðxÞy2
x dx; ð10eÞ

Z 1

0

TðxÞðyxx yt þ yxt yxÞ dx ¼ �
Z 1

0

TxðxÞyxyt dx: ð10fÞ

Proof. See Appendix A. &

Up to this point, some properties of the functions Vð�Þ and yð�; �Þ have been established. Next, it
is proved that Vð�Þ tends to zero exponentially, from which the stability of the wire represented by
Eqs. (1)–(3) follows.

Lemma 3.4. Consider system (1)–(3) and let

vovc :¼ ð
ffiffiffi
5

p
� 1Þ=2: ð11Þ

The function V ð�Þ; along the solution of system (1)–(3), tends to zero exponentially.
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Proof. From Eq. (6), it follows that (the argument ðx; tÞ of functions is deleted)

’VðtÞ ¼
Z 1

0

ðytt þ dytÞðyt þ dyÞ þ d2yty þ ½1� v2 þ kTðxÞ�yxtyx

� �
dx

þ b

Z 1

0

y2
x dx

Z 1

0

yxtyx dx; ð12Þ

for all tX0: Substituting ytt from Eq. (1) into Eq. (12), it follows that

’VðtÞ ¼ � d
Z 1

0

y2
t dx � 2v

Z 1

0

yxtyt dx � 2dv

Z 1

0

yxty dx

þ 1� v2 þ b

Z 1

0

y2x dx

� �Z 1

0

ðyxxyt þ yxtyxÞ dx

þ dð1� v2Þ
Z 1

0

yxxy dx þ dk

Z 1

0

TðxÞyxxy dx þ db

Z 1

0

y2x dx

Z 1

0

yxxy dx

þ k

Z 1

0

TðxÞ ðyxxyt þ yxtyxÞ dx þ k

Z 1

0

TxðxÞyxyt dx þ dk

Z 1

0

TxðxÞyxy dx; ð13Þ

for all tX0: Using Eqs. (10) in Eq. (13), it is concluded that

’VðtÞ ¼ � d
Z 1

0

y2
t dx � d

Z 1

0

½1� v2 þ kTðxÞ�y2x dx � d b

Z 1

0

y2
x dx

� �2

þ 2dv

Z 1

0

ytyx dx; ð14Þ

for all tX0: The last term on the right-hand side of Eq. (14) satisfies the inequality

2dv

Z 1

0

ytyx dxpdv

Z 1

0

y2t dx þ dv

Z 1

0

y2
x dx: ð15Þ

Using inequality (15) in Eq. (14), it follows that

’VðtÞp � dð1� vÞ
Z 1

0

y2
t dx � d½1� v � v2 þ kTðxÞ�

Z 1

0

y2
x dx

� db

Z 1

0

y2
x dx

� �2

; ð16Þ

for all tX0: Inequality (16) can be written as

’VðtÞp � 2d
1� v � v2

1� v2

� �
EðtÞ � d

 
v3

1� v2

� �Z 1

0

y2t dx þ
v

1� v2

	 
Z 1

0

kTðxÞy2x dx:

þ
b

2

1þ v � v2

1� v2

� � Z 1

0

y2x dx

� �2
!
; ð17Þ
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for all tX0: Thus,

’VðtÞp� 2d
1� v � v2

1� v2

� �
EðtÞ; ð18Þ

for all tX0: By inequality (11), it is clear that 1� v � v2 > 0: Using this fact and inequality (8) in
inequality (18), it follows that

’VðtÞp�
2dð1� v � v2Þ

Kð1� v2Þ
VðtÞ; ð19Þ

for all tX0:
Having Vð0Þ > 0 by Lemma 3.1 and a comparison theorem (see, e.g., Refs. [6, p. 2; 7, p. 3]), it is

concluded that

VðtÞpV ð0Þ exp �
2dð1� v � v2Þ

Kð1� v2Þ
t

� �
; ð20Þ

for all tX0: Thus, VðtÞ-0 exponentially as t-N: &

Now, the stability of the EDM wire follows.

Theorem 3.5. Consider system (1)–(3) and let inequality (11) hold. The solution of the system
yðx; tÞ-0 as t-N for all xA½0; 1�:

Proof. By Lemma 3.4, V ðtÞ-0 as t-N: Thus, by Eq. (6), yðx; tÞ-0 as t-N for all
xA½0; 1�: &

By Theorem 3.5, the stability of the EDM wire represented by Eqs. (1)–(3) is guaranteed when
the wire speed satisfies inequality (11), i.e., when vovcE0:6: The critical speed vc is a conservative
bound on the wire speed since Theorem 3.5 furnishes only a sufficient condition for the stability.
Thus, for wire axial speeds larger than vc; but less than 1, the wire can possibly be stable.

4. Conclusions

In this note, a mathematical model of electro-discharge machining (EDM) is studied. The
model is a non-linear partial differential equation which represents the transversal vibration of the
moving EDM wire. It is rigorously shown that the transversal vibration of the wire decays to zero
for wire axial speeds below a critical value. That is, the wire is stable. The wire stability is
established by showing that an energy-like (Lyapunov) function corresponding to the wire decays
to zero exponentially.

Appendix A. Various proofs

Proof of Lemma 3.1. The non-negativeness of V ð�Þ is obvious from Eq. (6). Recall that at least one
of the functions f ð�Þ or gð�Þ in Eq. (3) is not identically equal to zero over ½0; 1�: Furthermore, the
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function f ð�Þ , for which f ð0Þ ¼ 0 by Eq. (2), cannot assume a non-zero constant value over ½0; 1�:
Thus, from Eq. (7a), it follows that Eð0Þ is positive, and so is V ð0Þ by Eq. (7b). &

Proof of Lemma 3.2. By Scheeffer’s inequality, which is a Poincar!e-type inequality (see, e.g.,
Ref. [8, p. 67]), it is concluded thatZ 1

0

y2ðx; tÞ dxp
1

p2

Z 1

0

y2
xðx; tÞ dx; ðA:1Þ

for all tX0: Furthermore,Z 1

0

ytðx; tÞyðx; tÞ dxp
1

2p

Z 1

0

y2
t ðx; tÞ dx þ

p
2

Z 1

0

y2ðx; tÞ dx; ðA:2Þ

for all tX0: Using inequality (A.1) in inequality (A.2), it is concluded thatZ 1

0

ytðx; tÞyðx; tÞ dxp
1

2p

Z 1

0

y2
t ðx; tÞ dx þ

1

2p

Z 1

0

y2xðx; tÞ dx; ðA:3Þ

for all tX0:
Substituting inequalities (A.3) and (A.1) into Eq. (4) and noting that TðxÞX0 for all xA½0; 1�; it

follows that

V ðtÞpEðtÞ þ
d
2p

Z 1

0

y2t ðx; tÞdx þ
1þ 2d=p
1� v2

� �Z 1

0

½1� v2 þ kTðxÞ�y2
xðx; tÞ dx

� �
; ðA:4Þ

for all tX0: Since vo1 , it is concluded that

V ðtÞpEðtÞ þ
dð1þ 2d=pÞ
pð1� v2Þ

1

2

Z 1

0

ðy2
t ðx; tÞ þ ½1� v2 þ kTðxÞ� y2

xðx; tÞÞdx

� �
; ðA:5Þ

and finally

V ðtÞp 1þ
dð1þ 2d=pÞ
pð1� v2Þ

� �
EðtÞ; ðA:6Þ

for all tX0: Thus, inequality (8) holds with K given in Eq. (9). &

Proof of Lemma 3.3. From Eq. (2), it follows that

ytð0; tÞ ¼ ytð1; tÞ ¼ 0; ðA:7Þ

for all tX0:
Having Eq. (A.7), proofs of Eqs. (10a) and (10d) are, respectively, as follows:

2

Z 1

0

yxtyt dx ¼
Z 1

0

ðy2
t Þx dx ¼ y2t ð1; tÞ � y2

t ð0; tÞ ¼ 0; ðA:8Þ

for all tX0; and Z 1

0

ðyxxyt þ yxtyxÞ dx ¼
Z 1

0

ðyxytÞx dx ¼ 0: ðA:9Þ
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Having Eq. (2), proofs of Eqs. (10b) and (10c) are, respectively, as follows:Z 1

0

yxty dx ¼
Z 1

0

ðytyÞx dx �
Z 1

0

ytyx dx ¼ �
Z 1

0

ytyx dx; ðA:10Þ

Z 1

0

yxxy dx ¼
Z 1

0

ðyxyÞx dx �
Z 1

0

y2
x dx ¼ �

Z 1

0

y2
x dx: ðA:11Þ

Moreover, having Eq. (2), the truth of Eq. (10e) is established as follows:Z 1

0

TðxÞyxxy dx ¼
Z 1

0

ðTðxÞyxyÞx dx �
Z 1

0

TxðxÞyxy dx �
Z 1

0

TðxÞy2
x dx

¼ �
Z 1

0

TxðxÞyxy dx �
Z 1

0

TðxÞy2
x dx: ðA:12Þ

Finally, by Eq. (A.7), a proof of Eq. (10f) is as follows:Z 1

0

TðxÞðyxxyt þ yxtyxÞ dx ¼
Z 1

0

ðTðxÞyxytÞx dx �
Z 1

0

TxðxÞyxyt dx

¼ �
Z 1

0

TxðxÞyxyt dx: ðA:13Þ

Thus, Lemma 3.3 is proved. &
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